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Abstract 

In logic programming the unification process involves reading the entire term 
from the beginning up to the place where the needed information is stored (cf. 
[1]). It is clear that a reasonable system with the direct access to the information 
might be more efficient. For example, a binary tree of data is usually presented 
by a term and the standard PROLOG algorithm even when it knows the path 
leading to the desired node is forced to read the term symbol by symbol in order 
to understand the subtrees structure of the term. However if we'll teach this 
algorithm how to utilize the information about the addresses of the immediate 
successor nodes, which is in fact stored on the microlevel together with each 
node, then the algorithm will read only log of the length of the term. To 
provide data structures with the direct access we have to connect a PROLOG- 
like language with some external system that will support the descriptions of 
such structures. We consider the principles of designing such external systems 
based on the ideas and methods of labelled modal logic. 

We introduce reference structures - a basic mathematical model of a data 
organization capable to store and utilize information about its addresses.  A 

'Supported by the ARO under the MURI program "Integrated Approach to Intelligent Systems", 
grant no. DAA H04-96-1-0341. 

^Partially supported by the grant No.95-01-00416 of the Russian Foundation for Fundamental 
Research. 



prepositional labelled modal language is used as a specification and program- 
ming language for reference structures; the satisfiability algorithm for modal 
language gives a method of building and optimizing reference structures sat- 
isfying a given formula. Corresponding labelled modal logics are presented, 
supplied with cut free axiomatizations, completeness and decidability theorems 
are proved. Initialization of typed variables in some programming languages is 
presented as an example of a reference structure building. 

1    Introduction 

We suggest to interpret a labelled modal formula fmJA as "memory cell m stores 
sentence A" and to treat propositional variables as names of the cell contents. The 
labelled modal language allows to keep control over both unification of names and 
validity of the information stored. 

All this eventually makes it possible to do some sort of programming of referential 
data structures by means of labelled modal language in the following way. 

We consider a language with 

• atomic data constants ci, C2,..., 

• variables mi, 1712, ■ ■ ■ for memory cell addresses, 

• operation~of reading the contents of a cell, operation [•](•) for storing informa- 
tion to a cell, boolean connectives. 

A formula in this language may be regarded as a specification of a memory config- 
uration which stores data files ci, C2,... together with an information about contents 
of other cells, location of files, etc. The standard completeness and cut elimination 
proof of a corresponding logic of refence structures in fact gives an algorithm which 
verifies the unifiability of names and semantical correctness of this specification and 
in a positive case provides a data allocation table in abstract addresses. 

The compiling problem turns out to be iVP-complete. The corresponding algo- 
rithm suggested in the current paper is a hybrid of the unification and some sort of 
boolean satisfiability procedures. 

The restriction of the underlying objects to sentences (with validity relation on 
them) does not lead to a loss of generality for our purposes: if a proper data c,- 
originally represents a number N, we assume that c,- is the sentence "this is a number 



iV"; the same treatment may be given to other sorts of proper information: terms, 
names, addresses, etc. 

The general definition of a reference structure covers not only a wide class of 
computer data organizations, but also cross-references with built in reference assign- 
ments in formal languages, the system of proofs and theorems in a formal theory, 
etc. However in the current paper we restrict this general definition to pure reference 
structures closely oriented to the computer data bases. Since there will be no others 
here we will use a general name reference structures for the pure ones. 

2    Reference Structures 

2.1 Definition. The language C(M, C) of a reference structure depends on two sets 
M and C and is defined as follows. Let C = {ci, C2,..., T} be a set of data constants, 
which will represent a proper information to be stored in a reference structure. Let 
also M = {1,2,...} be a set of memory cells. The language of a reference structure 
contains storage operators [l](-)> [2](-),..., one for each memory cell, together with 
usual boolean connectives {A, V,->, T}. For any cell m G M there is a reference 
variable vm, vm = m for short. One should not be mislead by the notation: 1,2... 
are indeed variables, not constants, since the reading function corresponding to ~ will 
itself be a parameter of a reference structure. We denote by V the set of all reference 
variables. The set of formulas Fm(M, C) is the least set such that 

C,V C Fm{M,C), 

if m G M and A G Fm{M, C), then [m]A G Fm(M, C), 

if A, Be Fm(M, C), then (A A B), (A V B), (A -»■ B), (-A) G Fm(M, C). 

2.2 Definition. A formula is ground if it contains no reference variables, under 
St(M, C) we mean the set of all ground formulas of the language C(M, C). A sub- 
stitution is a partial mapping 6 : V —> Fm(M,C); 8 is a solution of an equation 
A = B, for A,ße Fm(M,C), if A0 = B9. Substitution 9 is a solution of a relation 
R C M x Fm(M, C) if 6 is a solution of m = A for every (m, A) G R. A substitution 
0 : V —> St(M, C) is called ground substitution. We assume that all atom constants 
are valid. Any ground solution 0 of a relation R C M x Fm{M, C) naturally defines 
a validity relation \=R g on all ground formulas: 



\=R8 T  and   |=fig c   for all  cG C, 

\=RB lmJA   &    (m e Dom R and  m~9 = A), 

\=R0  respects boolean connectives. 

A ground solution 9 of a relation R is valid on JV C M, if \=Re nO for all n 6 N. A 
storage table is a functional relation R C M x Fm(M, C) between memory cells and 
formulas. 

2.3 Definition. A reference structure is a storage table which has a ground solution 
9 valid on Dom R, i.e. a storage table with all stored sentences to be true. 

2.4 Comment. The relation R is a system of assigning memory cells to formulas 
from Fm(M, C) which is consistent from both combinatorial and semantical sides. 
The cells which are not in Dom R are called empty. The reserve of empty cells is 
both realistic and technically convenient. If R has a ground solution satisfying the 
definition of a reference structure above, then R has such a solution which is total on 
V. Without loss of generality we assume that 9 is already total and call it a reading 
procedure of R. A reading procedure provides a ground picture of the cell contents 
where all the references are already given their "real" meaning in terms of proper 
information and storage connections. On empty cells a reading procedure returns 
some ground sentences which may be regarded as sort of "error messages". 

2.5 Definition. Let R be a reference structure and 9 - its reading procedure. 
With a pair 3? = (R, 9) we associate a validity relation |= defined on all formulas from 
Fm{M,C): 

^M   #   t=R,eA9. 

It is easy to see that |= is an extention of the "old" validity relation \=R g from 
St{M, C) to Fm(M, C). Also, 3? \= A for all A € Val R. 

2.6 Lemma. 
M\=lm}A   =>   n\=A. 

Proof follows immediately from the definitions. 



2.7 Lemma.    The following are equivalent 

1. m is nonempty, 
2. 3? (= [m]S for some formula B, 
3. ft |= Imjrti. 

Proof. 3. =£> 2. =£■ 1. are trivial. We prove the remaining 1. 4-3. If m G Dom R, 
then (m, A) G i? for some formula Am6 = AO, hence |=H e \m\A6 and 3? |= [m] A ■ 

We can see now how the decision to have a reserve of empty cells increases the 
expressive power of the reference structures language. For example, the fact that 
m G M is not empty can now be expressed by a formula [m]m, which we will denote 
m and will use as a natural sentence format pointer. The meaning of m as a pointer 
is assumed to be built in the search algorithm. Note that the length of m can be 
easily made of the order of the length of m and ra. i.e. "very small". 

2.8 Example.   A list of c\, c2,..., cn may be described as the ground reference struc- 
ture R over M = {1,2,... ,n + 1} and C = {ci,c2, ...,c„} as 

Ä = {(l,¥>i),...,(n,<p„),(n + 1,T)} 

for (pi = AiA [2]</?2, </>2 = M A [3]</?3, • • •, Vn = An A [n + 1]T. Here T works as a 
marker of the end node. The list can be represented by the formula [l]vi)- 

It does not mean, however that we intend to store the entire list in one cell 1. We 
will see now how a regular reference structure "list" looks like: 

R = {(», Ai A 2), (2, A2 A 3),..., (n, An A n +1), (n + 1, T)}. 

The entire reference structure can now be represented by the formula 

[l](Ax A 2)) A • • • A HP» A »T1) A ln + 1lT- 

The main question here is how to decide whether there exists a reference structure 
satisfying given storage description, and to construct one if it exists. A finite equation 
system alone can be solved in linear time (cf.[5], [6]). The semantic component 
however spoils the picture: the problem immediately becomes at least iVP-hard, 
since it naturally includes the satisfiability problem for the classical propositional 
logic. Below we'll show that it is iVP-complete. 



3    Logic of reference structures 

Usually the Unification Algorithm deals with finite systems of "unconditional" equal- 
ities of the form A — B. Fast algorithms of solving such systems were suggested in 
[5] (cf. also [7]). We assume that formulas are presented as directed acyclic graphes 
with shared variables (dags) which allow lineartime unification ([5]). 

We will also be interested in the "conditional" equalities of the form 

f Ui = Vi, i€l m 

1 Si = Wj =► Ui = Vi, jeJ K ) 

For a convenience we consider some deterministic variant of the Unification Algo- 
rithm by fixing an order of the equations for this algorithm to choose. The suitable 
modification U of the unification algorithm for "conditional" equalities works as fol- 
lows. Using the standard unification algorithm solve the unconditional part of the 
system and calculate its m.g.u. a. Then pick a "conditional" equality and check the 

conditions 
Sjcr = Wjcr. 

If the condition fails, then take the next "conditional" equality. If the conditions are 
fulfilled, add the succedent equality to the unconditional part and solve the system 
again. The process terminates when the checking procedure fails to add new equalities 
or the unification algorithm fails to solve a current unconditional part of the system. 
The standard argument proves that this modification gives the most general unifier 
(m.g.u.) of the system with "conditional" equations. The standard m.g.u. of the set 
of equations (1) is the m.g.u. obtained by U. 

3.1 Lemma,   (cf. [3]). Let a be the standard m.g.u. of a "conditional" system (1). 

Then 
1. all variables occurring in cr are from (1), 
2. Dom(a) n Val(a) = 0, 
3. cr is idem-potent, i.e. cr o cr = cr, 
4- for every solution 6 of (1) there exists a substitution r s.t. 9 = a o r. 

Consider a labelled modal language L which contains 

memory cell variables CVar = {mi, m2,1^3,...}, 

reference variables RVar = {raj, raj, rh~i ...}, 



sentence constants Con = {ci, C2, C3,...}, the truth constant T 

and is closed under boolean connectives and labelled modalities [mt-](-),i = 1,2,... 
(unary operators). 

The difference between L and £(M, C) is that the cell addresses in L are variables, 
unlike £(M, C), where they are constants. 

3.2 Definition. Let M be a memory set and C a data constants set. An interpre- 
tation of L to Fm(M, C) is a mapping * of CVar into M and Con into C which is 
injective on Con. The interpretation * has a canonical extension to all L fromulas: 

T* = T, 

for p € RVar   p * = p*, 

* commutes with the boolean connectives, 

(\p\A)* is [p*]A*. 

We say that a L formula F is valid in a reference structure 9ft = (R, 6) under interpre- 
tation *, if 9ft |= F*. A reference structure 3? is a model of a given set r of L formulas 
under given interpretation * if U (= A* for each A € T. 

The language L may now be regarded as a programming language for reference 
structures. Here a program is a modal formula A describing the properties of a 
reference structure R. Satisfiability of A means the existence of a desired reference 
structure. The satisfiability algorithm for the language L naturally arises from the 
completeness proof of the calculus CR. (below). 

A substitution on the L formulas works simultaneously in two formats: cells and 
sentences. No special restrictions on substitutions are imposed. For example, an 
reference variable can be substituted by any L formula. 

Without a loss of generality we restrict the set of cell variables CVar to its finite 
fragment {mi,m2,... ,mr} (corresponding restriction should be put on the set of 
reference variables). Also we assume that Con is finite. 

3.3 Definition.   Under <TA,B,P we mean the standard m.g.u. of the set of equations 

P = A=J   ^ (2) 
m,- = m.j =£• m,- = mj. 

Here the "conditional" part is standard with mi,mj range over all cell variables 
occurring in "unconditional" part p = A = B. Note that O~A,B# is an idempotent and 



acts on the variables of all sorts,  miCTA,B,p is a cell variable and mi(TA,B,v is a formula 
from L. 

3.4 Definition.   We define   C — D (mod p = A = B) to stand for 

"C<r = Da  for every solution <x of (2)". 

Apparently, if the system (2) has no solution, then C — D (mod p = A = B) 
holds for all C and D. If the system (2) has a solution then 

C = D (mod p = A = B)   &   CaAyByV = D<TA,B,P- 

So, the relation    C = D (mod p = A = B)  is decidable. 

Axioms of CR.: 

(Al) The classical propositional axioms together with constants {ci,c2,c3,..., T} 
adopted as new axioms, 

(A2) \p\A -J. A, 

(A3) \p]A A \p]B ^(C^D)   if C = D (mod p = A = B). 

Rule modus ponens. 

Axiom (A3) is similar to the unification axiom from [2] and the functionality axiom 
from [4]. 

3.5 Example.   The following is provable in CR: 

• -^([piMi A ... A [p„]An)  if the system 

pk = Ak    (fc = l,...,re); 

p = q => p = q for all cell variables p, q iy) 
occurring in \p{\Ai A ... A \pn\An 

is not unifiable. 

• [pil^i A ... A [pn]^4n —y {B <r> C)  if Be = C<7 for the most general unifier a 
satisfying the condition (3). 



4    Completeness theorem 

4.1 Lemma.   For any modal formula F if CR h F, then F* is valid under every 
interpretation * in reference structures. 

Proof.    A straightforward induction on the proof of F. ■ 

4.2 Theorem.   For any formula F 6 L if CR, \f F, then there exists a finite reference 
structure 3? and interpretation * of the language L into 5R such that 5ft ^ F*. 

Now we introduce a Gentzen style formulation of CR, and prove simultaneously 
the completeness theorem along with the cut elimination property of the relevant 
Gentzen style system. 

In what follows a sequent is a formal expression of the form T Z> A, where T and 
A are finite sets of L formulas. 

4.3 Definition.   CRG is the following sequent calculus: 

Axioms: 

• T D A  such that   T ("I A ^ 0 or T € A or c 6 A for some c G Con. 

• T D A such that E C T , where E = {IpiJAi  \ i — 1,2,...} and the system (3) 
for E is not unifiable. 

Rules: 

• Classical rules for A,-" and structural rules together with the cut-rule. 

•    A,TD A 
IPU,TD A 

E,B(T,TDA E,TDB<T,A „     fri,|.     - 0      ,      , 
• E B TD A    '      ETD B A    ' re   " = {v>lJAi | * = 1,2,...} and o- 

is the most general unifier of (3) for E and obtained as a result of the standard 
unification algorithm U. 



4.4 Definition.     CRG is the system CRG without the cut rule. 

The following lemma claims the soundness of CRG w.r.t. CR. 

4.5 Lemma.   If CRG h T D A, then CR h A T -> V A. * 

Proof.    Standard induction on the complexity of the proof of T D A in CRG-       ■ 

4.6 Definition.   Saturation process is the nondeterministic procedure constructing 
a saturation tree labelled by pairs (sequent, substitution) as follows: 

Given the sequent To D Ao put 

T'0 = T0 U {T} U { the set of all constants, occurring in T0 D A0}, 

and label the root by (T'0 D A0, e), where e is an empty substitution, and 
try repeatedly to apply the saturation rules while they add to the tree 
some node with the label sequent different from the label of its parent. 
The rules can be applied to an arbitrary leaf of the current part of the tree 
if its label sequent T D A is not an axiom of CRG\ in the formulations of 
the rules we suppose that such a leaf (a current node) is already chosen 
and labelled by (r D A, a). 

Saturation rules: 

Rule 1. If A A B G T, then add to the tree a son of the current node 
labelled by (r U {A, B} D A, a). 

Rule 2. If A A B G A, then add to the tree two sons of the current node 
labelled by (r D A U {A}, a) and (r D A U {B}, a). 

Rule 3. If -<A € T (-<A € A), then add to the tree a son of the current 
node labelled by (r D A U {A}, a) (correspondingly, (r U {A} D 
A,*)). 

Rule 4. If OpA € T, then add to the tree a son of the current node 
labelled by (r U {A} D A, a). 

Rule 5. Call the unification algorithm U to get the most general solution 
a' of the system (3) where {|p,]A,-,i = l,...,n} is the list of all 
formulas of the form |p,]A from T. Add to the tree a son of the 
current node labelled by (To-' D ACT', era'). 

lYox Q = {AltA2,...}   A n = M A ^2 A ..., and V ^ = M V A2 V .... 

10 



4.7 Lemma. If (T D A, er) is a label in a saturation tree, then for any variable v 

occurring in T D A we have vcr = v. 

Proof. First of all we notice that none of the variables from Dom(cr) occurs in Val(cr) 
since a is a product of m.g.u.'s each enjoying the properties of lemma 3.1. Consider a 
step 5. Any variable v occurring in T D A is neither from Dom(a) nor from Dom(cr'). 
Thus v is a fixed point of both a and &'. ■ 

4.8 Corollary. For any label (T D A, a) of the saturation tree any subformula A of 
r^Awe have Acr = A, (hence IV = T and ACT = A). 

4.9 Lemma,   a2 = a. 

Proof. Dom{a) n Val(cr) = 0. ■ 

4.10 Lemma.    The saturation process terminates. 

Proof. Rules 1-4 do not change the subformulas of the sequent so they can not 
be applied infinitely many times. Any application of the rule 5 reduces the set of 
variables occurring in T D A, thus any path in a saturation tree is finite and the tree 
itself is finite. ■ 

Therefore the saturation process always terminates and computes some saturation 
tree of a given sequent. We say that the saturation process succeeds if it produces a 
saturation tree with all leafs labelled with axioms; otherwise it fails. 

4.11 Lemma. If the saturation process on a given sequent succeeds, then the sequent 
is provable in CJZQ. 

Proof. A saturation tree with all leafs labelled by axioms is in fact the tree-like 
derivation in C'JZQ of the sequent labeling the root. ■ 

Suppose the saturation process fails on a sequent To D Ao. Then it produces a 
leaf of the saturation tree labelled by (r D A, o~) such that 

• T0O- c r, AQO- c A, r n A = 0, T e r, Con c r; 

• if {A A B) € T, then A € V and B e T; 

11 



• if (A AB) e A, then A G A or B G A; 

• if ^A G T, then A G A; if->A € A, then A € T; 

• if [pJA € T, then A G T; 

• T is functional: [p]A G T and [p]B G Y imply A = B. 

Now we are ready to define a reference structure 3? and an interpretation * which 
will eventually become a countermodel for To D A0. 

Let M be the set of cell variables occurring in Y0 D A0, which are fixed points of 

<r, i.e. 
M = {m G CVar \ ma — m}. 

In particular, all cell variables occurring in Y D A are in M. Let the set of data 
constants C be Con U D, where D is a set of "new constants" corresponding to fixed 
point reference variables: 

D = {d(m) | mcr = m}. 

In particular, every reference variable m occurring in Y D A received a corresponding 
constant d(m). 

It is clear, that the fixed point reference variables remain sort of parameters of the 
future reference structure and they can be evaluated in either way. However the rules 
of the game require them to become ground sentences. The easiest way to ensure it 
is to introduce special new constants to evaluate these variables. 

Now the set of Fm(M, C) is defined. 

Put for any fixed point reference variable m 

\ -'dfa),   otherwise, 

Now for any subformula A of Y D A we define a ground AA G Fm(M,C): c$ = c,-, 
TA = T, mA = A(m), ([ra]J5)A = [m]BA. Note that the translation A is injective 
since no constants d(m) are unified for different m G M. So, we will write BX instead 
of Bx understanding A as the substitution {mJ/A(mJ),m^/A(m^)...}. Put 

6 = <T\, 

12 



and let 
ß={(m,A)|[m]Aer>. 

We have to establish now that ft = (R, 9) is a reference structure. First, 9 is clearly a 
ground substitution. Then it is easy to see that 9 unifies R. Indeed, let (m, A) G -R, 
then [ra]A G T, and, by the saturation construction ma = Aa. Thus 

mo = ma\ = Acr\ = Ad. 

4.12 Lemma. 
ACT    ^   \=R,eA6, 

AGA   =»   fiR}9A8. 

Proof. Induction on A. The cases A is a constant c,-, T as well as the case A is an 
reference variable ra are covered by the definitions of T D A and 9. The cases of 
boolean connectives are trivial by the construction of the saturated sequent T D A. 
Now 

[m]B G T  =>  (m,B)eR =>  m9 = B9 =*> \=Rg [m]B0. 

Let now [ra]i? € A. If ra G" Dom(R), then clearly Y=Re \rri\B9. Let now m G 
Dom(R), i.e. |ra]£' G T for some B', then mö = B'O. If £0 = B'6, then 5<r = 5V, 
since A is injective, and thus B = Bcr = B'a = B', which is impossible because 
r n A = 0. ■ 

4.13 Lemma.   ft = (R, 6) is a reference structure. 

Proof. It only remains to check that m9 is valid on Dom(R). Let ra G Dom(R), 
then (m, A9) G R9 and there exists some B such that [ra]J3 G V and B9 = A0. Then, 
by the saturation property, B G T, thus, by lemma 4.12 [=ße B9, i.e. [=Re A0.       ■ 

Now we define an interpretation * by ra* = m,<7, and thus A* = Aa for any L 
formula A. Note that Acr is simultaneously a formula of the reference structure ft. 

It is almost trivial now that ft ^ (A To —>■ V Ao)*- Indeed, if A G To, then Aa G T, 
and ft |= Aa9, by lemma 4.12, and ft |= A*. Similarly, if A G A0, then ft ^ A*. 

Thus we have established the following: for any sequent T 3 A in the language L 

CRTG\/YD& =► ft^(/\r-+VA)* =► ai\//\r->\/A =► CRG\/TDA, 

13 



which together with the trivial 

CRG \f r D A =» £^5 ^ r D A 

gives 

4.14 Corollary.   (Cut elimination for CRQ) CRG = CRG 

4.15 Corollary.   CRG is an adequate Gentzen style formulation of CR. 

4.16 Corollary.   CR, is decidable. 

Let us complete the proof of Theorem 4.2. Fix a formula F satisfying the condi- 
tions of the Theorem 4.2. Put T0 = 0 and A0 = {F}. Since CRQ \f T0 D A0 the 
saturation process on the sequent To D Ao fails, and there is a reference structure 5R 
such that 3? ^ A To ->• V Ao, i.e. 5R ^ F. m 

A lazy inspection of the completeness proof above demonstrates that the size of 
a countermodel (in a dags form) of a given L formula A can be made less than c/4, 
where / is the length of A, and c fixed. 

Also, on the basis of lineartime unification algorithms from [5], [7] one can easily 
proof the following time complexity bounds for some natural problems in reference 
structures. 

4.17 Theorem. 

1. The problem "whether 3? = (R, 9) is a reference structure" is polytime. 
2. The satisfiability problem for the language L is NP-complete. 

5    Reference structures building and optimization. 

The language L can now be considered as a programming language for designing 
reference structures with reading procedures. A program here is a labelled modal 
formula P describing the properties of some reference structure 3? . The satisfiability 
algorithm extracted from the proofs of the Theorem 4.2 checks whether P is satisfiable 
and constructs a finite model of P, which is a desired reference structure. 
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We reduce the problem of constructing a model of P to the problem of construct- 
ing a countermodel for the sequent P D. The saturation algorithm checks whether 
this sequent is provable and transforms it into the sequent F D A with saturation 
properties. If saturation succeeds, then CK h ->P, and thus there is no reference 
structure satisfying the condition P. If saturation fails, then we have a quadratic of 
the size of P reference structure 3? and an interpretation * such that P* is valid in JR. 

Let us consider an example of a problem "initialization of typed variables", which 
comes from some common programming languages like PASCAL, C, etc. 

5.1 Example. (Initialization of typed variables). We consider the following variant 
of commonly used typing system. Let T be a finite set of primitive types with domains 
DT, T G T (the domains are supposed to be decidable but not necessary disjoint). 
The set of all types Type is constructed from T by the rules: 

Rule : Domain : 

(Union) l^L-'l" D.U...UA. 

(Subset) -£——77—p—- —.—r—-=  V{ai,...,an} 
Setjof(ailn,...,an\rn) G Type 

The initialization problem: given a type r G Type and an object a G öreType DT 

we have to check whether a G DT and, if it is, to build a data structure which stores a 
as an object of type r together with some address which is the value of corresponding 
pointer. 

The basic elements to construct a reference structure from are constants for objects 
of primitive types. A reference structure is supposed to represent the type structure 
in a way that provides a direct access to any subobject of a given object. 

With the pair (T, a) we associate a formula <&(r, a) G L and a cell variable p in it: 

(Primitive type): r G T and a G DT. Then 

$(r, a) = H>]cT,a, 
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Ti G Type, 1 < i < n 
{TI,...,T„} G Type 

Ti G Type, 1 < i < n 
{n;...;rn} eType 

Ti G Type, a,- G DTi, 1 < i <n 



where cT)0 is a data constant. 

(Structure): r = {ri,...,rn} and a = (ai,...,an). Then 

n 

*(r,a) = (A*.-)A[p](piA...Ap„), 
«=i 

where $,• is a variant of $(r,-, a,-) obtained from it by renaming the variables of 
the form <?, g (so $, and $j for i ^ j do not have common variables) and p,- is 
the associated cell variable. 

(Union): r = {TI; ...; rn}. Then 

*(T,a) = (V*;)A[p]g, 
1=1 

where $,- = $t[g/Pt']5 9 is a new variable and $, is obtained from $(r,-, a) in the 
same way as for (Structure). 

(Subset): r = Setjof(ai\ri,..., an\rn) and a C {d,..., an}. Then 

$(T, a) = ( A ""A) A ( A *0 A [p]("-[po]T ^> px V ... V pn), 

where pa is a new cell variable and $,-, pi, (1 < i < n) are the same as for 
(Structure). Here the formula [pojT indicates whether the object a is empty. 

(Type mismatch): In all other cases $(T,O,) = |p]J_. 

In all cases the associated cell variable is p. 
It is easy to see that $(r,a) is satisfiable iff a G DT. The satisfiability algorithm 

transfers it into a data structure implementing the initialization 

v := a 

for a variable v of type r. The interpretation p* of the associated cell variable is 
an address sufficient to restore all the information about the value of v as an object 
of type r. It is a natural pointer value. Specific features of the implementation are 
reflected in $(r, a); it plays a role of a program for building this data structure. The 
examples of resulting data structures are shown on Fig.l. 
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Structure Union 

T = {TI,T2},   a = (a1,o2). 

bil°i A |P2l°2 A [p](pT A ft) 

p :      pi      A      p2 

Pi : 
ai 

ft : 
«2 

r = {ri;r2} 

(Mai V 

,   ae DT1U DT2 

kJa2) A Mq 

p:      q 

< 

: . 

I 

r = Setjof{a1 : n, a2 : r2, a3 : r3),   a = {a2, a3}. 

-ft A [p2]a2 A [p3]a3 A [pI(-[ft]T f+ p{ V ft V ft) 

P-   ^IpojT   <+      pi       V      ft       V ft 

Po : 
* Pi :° 

P2 : 
«2 

P3 : 
Ö3 

r = Set-of(ax : n, a2 : r2, a3 : r3),   a = 0. 

-"Pi A --ft A ->#£ A [p](->[po]T <-> ft V ft V ft) 

p:   -"[po]T   <*      ft       V      ft       V      ft 

Po: 
T Pi D p2 : D p3 : D 

Figure 1: 
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Note that we have chosen the variant of the program $(r, a) where all possible sim- 
plifications are already done. This job can be left to the satisfiability algorithm too. 
For example in the case of (Structure) when r = {ri,..., r„} and a = (ai,..., am) 
we may take the following variant: 

m 

lp}(Pi A • • • A Pn) A (A *0 A [p](pi A ... A An). 
1=1 

It is equivalent to <$>(T,a) and the algorithm transfers it into the same data structure. 

In order to construct a reference structure which uses only one cell instead of many 
containing the same record, i.e. to construct a reference structure with a functional 
conversion of the ground storage relation (R6)-1 or, even more, with invertible reading 
procedure 0, we introduce the logics CR.\ and CR.\-i. The logic CR\ is CR + (A4) 
where (A4) is the following axiom scheme: 

(A4) \p]A A \p'\A -+(£?<-> B\p'/p\). 

CHi-i is the modification of CK where the "conditional" equality 

is replaced by 
p = q & p = q. 

5.2 Theorem.   For any labelled modal formula F 

1. CR.\ h F iff F* is valid for all interpretations * in finite reference structures 
with functional relation (R6)~l; 

2. CR-x-x V A iff A* is valid for all interpretations * in finite reference structures 
with invertible reading procedure 0. 

Proof.    Similar to the proof of the completeness Theorem 4.2. ■ 

The logics CTZi and CTZi-x are also decidable. The satisfiability algorithms from 
the completeness proofs for these logics can be used in the same way as that for CJl 
to construct reference structures without double stored sentences. The complexity 
bounds from Theorem 4.17 are also preserved. 
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